Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 788
Filtrar
1.
Mol Cancer Res ; 22(4): 386-401, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38294692

RESUMO

Calcium homeostasis is critical for cell proliferation, and emerging evidence shows that cancer cells exhibit altered calcium signals to fulfill their need for proliferation. However, it remains unclear whether there are oncogene-specific calcium homeostasis regulations that can expose novel therapeutic targets. Here, from RNAi screen, we report that adenosylhomocysteinase like protein 1 (AHCYL1), a suppressor of the endoplasmic reticulum (ER) calcium channel protein inositol trisphosphate receptor (IP3R), is selectively upregulated and critical for cell proliferation and tumor growth potential of human NRAS-mutated melanoma, but not for melanoma expressing BRAF V600E. Mechanistically, AHCYL1 deficiency results in decreased ER calcium levels, activates the unfolded protein response (UPR), and triggers downstream apoptosis. In addition, we show that AHCYL1 transcription is regulated by activating transcription factor 2 (ATF2) in NRAS-mutated melanoma. Our work provides evidence for oncogene-specific calcium regulations and suggests AHCYL1 as a novel therapeutic target for RAS mutant-expressing human cancers, including melanoma. IMPLICATIONS: Our findings suggest that targeting the AHCYL1-IP3R axis presents a novel therapeutic approach for NRAS-mutated melanomas, with potential applicability to all cancers harboring RAS mutations, such as KRAS-mutated human colorectal cancers.


Assuntos
Adenosil-Homocisteinase , Retículo Endoplasmático , Melanoma , Humanos , Adenosil-Homocisteinase/metabolismo , Cálcio , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , GTP Fosfo-Hidrolases/genética , Homeostase , Melanoma/metabolismo , Melanoma/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo
2.
Adipocyte ; 13(1): 2290218, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38064408

RESUMO

S-adenosyl-homocysteine-hydrolase (AHCY) plays an important role in the methionine cycle regulating cellular methylation levels. AHCY has been reported to influence proliferation and differentiation processes in different cell types, e.g. in cancer cells and mouse embryonic stem cells. In the development of adipose tissue, both the proliferation and differentiation of adipocyte progenitor cells (APCs) are important processes, which in the context of obesity are often dysregulated. To assess whether AHCY might also be involved in cell proliferation and differentiation of APCs, we investigated the effect of reduced AHCY activity on human and mouse APCs in vitro. We show that the inhibition of AHCY using adenosine dialdehyde (AdOx) and the knockdown of AHCY using gene-specific siRNAs reduced APC proliferation and number. Inhibition of AHCY further reduced APC differentiation into mature adipocytes and the expression of adipogenic differentiation markers. Global DNA methylation profiling in human APCs revealed that inhibition of AHCY is associated with alterations in CpG methylation levels of genes involved in fat cell differentiation and pathways related to cellular growth. Our findings suggest that AHCY is necessary for the maintenance of APC proliferation and differentiation and inhibition of AHCY alters DNA methylation processes leading to a dysregulation of the expression of genes involved in the regulation of these processes.


Assuntos
Adenosil-Homocisteinase , Adipócitos , Tecido Adiposo , Animais , Humanos , Camundongos , Adipócitos/metabolismo , Adipogenia/genética , Diferenciação Celular/genética , Proliferação de Células , Células-Tronco , Adenosil-Homocisteinase/genética , Adenosil-Homocisteinase/metabolismo
3.
Biochem Biophys Res Commun ; 686: 149152, 2023 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-37926042

RESUMO

S-adenosylhomocysteine (SAH) hydrolase is the enzyme responsible for breaking down SAH into adenosine and homocysteine. It has long been believed that a deficiency of this enzyme leads to SAH accumulation, subsequently inhibiting methyltransferases responsible for nucleic acids and proteins, which severely affects cell proliferation. To investigate whether targeting this enzyme could be a viable strategy to combat Trypanosoma brucei, the causative agent of human African trypanosomiasis, we created a null mutant of the SAH hydrolase gene in T. brucei using the Cre/loxP system and conducted a phenotype analysis. Surprisingly, the null mutant, where all five SAH hydrolase gene loci were deleted, exhibited normal proliferation despite the observed SAH accumulation. These findings suggest that inhibiting SAH hydrolase may not be an effective approach to suppressing T. brucei proliferation, making the enzyme a less promising target for antitrypanosome drug development.


Assuntos
Trypanosoma brucei brucei , Humanos , Adenosil-Homocisteinase/genética , Adenosil-Homocisteinase/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , S-Adenosil-Homocisteína/metabolismo , Adenosina/genética , Adenosina/farmacologia
4.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003292

RESUMO

S-adenosylhomocysteine hydrolase (AHCY) deficiency results mainly in hypermethioninemia, developmental delay, and is potentially fatal. In order to shed new light on molecular aspects of AHCY deficiency, in particular any changes at transcriptome level, we enabled knockdown of AHCY expression in the colon cancer cell line SW480 to simulate the environment occurring in AHCY deficient individuals. The SW480 cell line is well known for elevated AHCY expression, and thereby represents a suitable model system, in particular as AHCY expression is regulated by MYC, which, on the other hand, is involved in Wnt signaling and the regulation of Wnt-related genes, such as the ß-catenin co-transcription factor LEF1 (lymphoid enhancer-binding factor 1). We selected LEF1 as a potential target to investigate its association with S-adenosylhomocysteine hydrolase deficiency. This decision was prompted by our analysis of RNA-Seq data, which revealed significant changes in the expression of genes related to the Wnt signaling pathway and genes involved in processes responsible for epithelial-mesenchymal transition (EMT) and cell proliferation. Notably, LEF1 emerged as a common factor in these processes, showing increased expression both on mRNA and protein levels. Additionally, we show alterations in interconnected signaling pathways linked to LEF1, causing gene expression changes with broad effects on cell cycle regulation, tumor microenvironment, and implications to cell invasion and metastasis. In summary, we provide a new link between AHCY deficiency and LEF1 serving as a mediator of changes to the Wnt signaling pathway, thereby indicating potential connections of AHCY expression and cancer cell phenotype, as Wnt signaling is frequently associated with cancer development, including colorectal cancer (CRC).


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Adenosil-Homocisteinase/genética , Adenosil-Homocisteinase/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/genética , Neoplasias Colorretais/patologia , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral , Via de Sinalização Wnt/genética
5.
Nat Metab ; 5(8): 1303-1318, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37580540

RESUMO

The genomic landscape of colorectal cancer (CRC) is shaped by inactivating mutations in tumour suppressors such as APC, and oncogenic mutations such as mutant KRAS. Here we used genetically engineered mouse models, and multimodal mass spectrometry-based metabolomics to study the impact of common genetic drivers of CRC on the metabolic landscape of the intestine. We show that untargeted metabolic profiling can be applied to stratify intestinal tissues according to underlying genetic alterations, and use mass spectrometry imaging to identify tumour, stromal and normal adjacent tissues. By identifying ions that drive variation between normal and transformed tissues, we found dysregulation of the methionine cycle to be a hallmark of APC-deficient CRC. Loss of Apc in the mouse intestine was found to be sufficient to drive expression of one of its enzymes, adenosylhomocysteinase (AHCY), which was also found to be transcriptionally upregulated in human CRC. Targeting of AHCY function impaired growth of APC-deficient organoids in vitro, and prevented the characteristic hyperproliferative/crypt progenitor phenotype driven by acute deletion of Apc in vivo, even in the context of mutant Kras. Finally, pharmacological inhibition of AHCY reduced intestinal tumour burden in ApcMin/+ mice indicating its potential as a metabolic drug target in CRC.


Assuntos
Neoplasias Colorretais , Animais , Humanos , Camundongos , Adenosil-Homocisteinase/genética , Adenosil-Homocisteinase/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Metabolômica , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética
6.
Redox Biol ; 65: 102828, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37517319

RESUMO

AIMS: Vascular senescence, which is closely related to epigenetic regulation, is an early pathological condition in cardiovascular diseases including atherosclerosis. Inhibition of S-adenosylhomocysteine hydrolase (SAHH) and the consequent increase of S-adenosylhomocysteine (SAH), a potent inhibitor of DNA methyltransferase, has been associated with an elevated risk of cardiovascular diseases. This study aimed to investigate whether the inhibition of SAHH accelerates vascular senescence and the development of atherosclerosis. METHODS AND RESULTS: The case-control study related to vascular aging showed that increased levels of plasma SAH were positively associated with the risk of vascular aging, with an odds ratio (OR) of 3.90 (95% CI, 1.17-13.02). Elevated pulse wave velocity, impaired endothelium-dependent relaxation response, and increased senescence-associated ß-galactosidase staining were observed in the artery of SAHH+/- mice at 32 weeks of age. Additionally, elevated expression of p16, p21, and p53, fission morphology of mitochondria, and over-upregulated expression of Drp1 were observed in vascular endothelial cells with SAHH inhibition in vitro and in vivo. Further downregulation of Drp1 using siRNA or its specific inhibitor, mdivi-1, restored the abnormal mitochondrial morphology and rescued the phenotypes of vascular senescence. Furthermore, inhibition of SAHH in APOE-/- mice promoted vascular senescence and atherosclerosis progression, which was attenuated by mdivi-1 treatment. Mechanistically, hypomethylation over the promoter region of DRP1 and downregulation of DNMT1 were demonstrated with SAHH inhibition in HUVECs. CONCLUSIONS: SAHH inhibition epigenetically upregulates Drp1 expression through repressing DNA methylation in endothelial cells, leading to vascular senescence and atherosclerosis. These results identify SAHH or SAH as a potential therapeutic target for vascular senescence and cardiovascular diseases.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Animais , Camundongos , Adenosil-Homocisteinase/genética , Adenosil-Homocisteinase/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Doenças Cardiovasculares/genética , Estudos de Casos e Controles , Células Endoteliais/metabolismo , Epigênese Genética , Dinâmica Mitocondrial , Análise de Onda de Pulso , S-Adenosil-Homocisteína/metabolismo
7.
Biol Direct ; 18(1): 8, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36872327

RESUMO

BACKGROUND: Lung cancer is one of the most frequently diagnosed cancers characterized by high mortality, metastatic potential, and recurrence. Deregulated gene expression of lung cancer, likewise in many other solid tumors, accounts for their cell heterogeneity and plasticity. S-adenosylhomocysteine hydrolase-like protein 1 (AHCYL1), also known as Inositol triphosphate (IP(3)) receptor-binding protein released with IP(3) (IRBIT), plays roles in many cellular functions, including autophagy and apoptosis but AHCYL1 role in lung cancer is largely unknown. RESULTS: Here, we analyzed the expression of AHCYL1 in Non-Small Cell Lung Cancer (NSCLC) cells from RNA-seq public data and surgical specimens, which revealed that AHCYL1 expression is downregulated in tumors and inverse correlated to proliferation marker Ki67 and the stemness signature expression. AHCYL1-silenced NSCLC cells showed enhanced stem-like properties in vitro, which correlated with higher expression levels of stem markers POU5F1 and CD133. Also, the lack of AHCYL1 enhanced tumorigenicity and angiogenesis in mouse xenograft models highlighting stemness features. CONCLUSIONS: These findings indicate that AHCYL1 is a negative regulator in NSCLC tumorigenesis by modulating cell differentiation state and highlighting AHCYL1 as a potential prognostic biomarker for lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Adenosil-Homocisteinase , Plasticidade Celular , Carcinogênese
8.
Front Cell Infect Microbiol ; 13: 1333773, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38268790

RESUMO

Introduction: Pseudomonas aeruginosa (P. aeruginosa) is a common pathogen associated with biofilm infections, which can lead to persistent infections. Therefore, there is an urgent need to develop new anti-biofilm drugs. DZ2002 is a reversible inhibitor that targets S-adenosylhomocysteine hydrolase and possesses anti-inflammatory and immune-regulatory activities. However, its anti-biofilm activity has not been reported yet. Methods and results: Therefore, we investigated the effect of DZ2002 on P. aeruginosa PAO1 biofilm formation by crystal violet staining (CV), real-time quantitative polymerase chain reaction (RT-qPCR) and confocal laser scanning microscopy (CLSM). The results indicated that although DZ2002 didn't affect the growth of planktonic PAO1, it could significantly inhibit the formation of mature biofilms. During the inhibition of biofilm formation by DZ2002, there was a parallel decrease in the synthesis of alginate and the expression level of alginate genes, along with a weakening of swarming motility. However, these results were unrelated to the expression of lasI, lasR, rhII, rhIR. Additionally, we also found that after treatment with DZ2002, the biofilms and extracellular DNA content of PAO1 were significantly reduced. Molecular docking results further confirmed that DZ2002 had a strong binding affinity with the active site of S-adenosylhomocysteine hydrolase (SahH) of PAO1. Discussion: In summary, our results indicated that DZ2002 may interact with SahH in PAO1, inhibiting the formation of mature biofilms by downregulating alginate synthesis, extracellular DNA production and swarming motility. These findings demonstrate the potential value of DZ2002 in treating biofilm infections associated with P. aeruginosa.


Assuntos
Adenina/análogos & derivados , Butiratos , DNA , Pseudomonas aeruginosa , Adenosil-Homocisteinase , Simulação de Acoplamento Molecular , Alginatos , Biofilmes
9.
BMC Genomics ; 23(1): 700, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36221052

RESUMO

Long non-coding RNAs (lncRNAs) play a vital role in regulating adipogenesis. However, the associated regulatory mechanisms have yet to be described in detail in pig. In this study, we demonstrate a critical role for lncMYOZ2 in adipogenesis from porcine preadipocytes. Specifically, lncMYOZ2 was more abundant in the adipose tissue of Mashen (fat-type) pigs than for Large White (lean-type) pigs, and knockdown of this lncRNA significantly inhibited the differentiation of porcine preadipocytes into adipocytes. Mechanistically, we used RNA pull-down and RIP assays to establish that lncMYOZ2 interacts with adenosylhomocysteinase (AHCY). Moreover, lncMYOZ2 knockdown increased promoter methylation of the target gene MYOZ2 and lowered its expression. Finally, we describe a positive regulatory role for MYOZ2 in adipogenesis. Collectively, these findings establish lncMYOZ2 as an important epigenetic regulator of adipogenesis via the aforementioned AHCY/MYOZ2 pathway, and provide insights into the role of lncRNAs in porcine adipose development.


Assuntos
Adipogenia , RNA Longo não Codificante , Adenosil-Homocisteinase/metabolismo , Adipócitos/metabolismo , Adipogenia/genética , Tecido Adiposo/metabolismo , Animais , Diferenciação Celular/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Suínos
10.
Stem Cell Res Ther ; 13(1): 418, 2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-35964109

RESUMO

BACKGROUND: Autologous stem cell therapy is a promising strategy for cardiovascular diseases including diabetic cardiomyopathy (DCM), but conclusions from clinical trials were compromised. We assumed that diabetes might induce the dysfunction of stem cells and thus limit its therapeutic effect. This study aimed to compare the effect of diabetes and nondiabetes-derived bone marrow mesenchymal stem cells (BMSCs) transplantation on DCM and explored the potential mechanism. METHODS: Rats with diabetes were induced using high-fat diets and streptozotocin (STZ) injection. BMSCs harvested from diabetic and nondiabetic rats were infused into DCM rats, and the effects on the heart were identified by echocardiography and histopathology. The inhibition or overexpression of SAHH in nondiabetic and diabetic BMSCs was used to confirm its key role in stem cell activity and cardiac therapy. RESULTS: Compared with normal BMSCs, the therapeutic effects of diabetic rat-derived stem cells on improving cardiac function and adverse remodeling were significantly attenuated. In vitro, diabetic BMSCs had lower cell viability and paracrine function than nondiabetic BMSCs. It was further found that diabetic BMSCs had obvious mitochondrial oxidative stress damage and S-adenosylhomocysteine (SAH) accumulation due to S-adenosylhomocysteine hydrolase (SAHH) deficiency. SAHH inhibition by adenosine dialdehyde (ADA) or shSAHH plasmid in normal BMSCs significantly reduced the favorable effects on endothelial cell proliferation and tube-forming capacity. In contrast, SAHH overexpression in diabetic BMSCs significantly improved cellular activity and paracrine function. Transplantation of BMSCs with SAHH overexpression improved cardiac adverse remodeling and angiogenesis. Activation of the Nrf2 signaling pathway may be one of the key mechanisms of SAHH-mediated improvement of stem cell viability and cardiac repair. CONCLUSIONS: Diabetes leads to compromised bioactivity and repair capacity of BMSCs. Our study suggests that SAHH activation may improve the cardioprotective effect of autologous transplantation of diabetes-derived BMSCs on patients with DCM. Diabetes induced the inhibition of S-adenosylhomocysteine (SAH) expression and aging phenotype in BMSCs and thus decreased the cell viability and paracrine function. Compared with normal BMSCs, the therapeutic effects of diabetic rat-derived BMSCs on improving cardiac function and adverse remodeling were significantly attenuated. SAHH overexpression in diabetic BMSCs significantly rescued cellular function partly via activating Nrf2/HO-1 signal. Transplantation of diabetic BMSCs with SAHH overexpression improved angiogenesis and cardiac adverse remodeling in rats.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Células-Tronco Mesenquimais , Adenosil-Homocisteinase/metabolismo , Adenosil-Homocisteinase/farmacologia , Animais , Diabetes Mellitus Experimental/patologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/terapia , Células-Tronco Mesenquimais/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , S-Adenosil-Homocisteína/metabolismo , S-Adenosil-Homocisteína/farmacologia
11.
Oxid Med Cell Longev ; 2022: 4061713, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35927991

RESUMO

Wumei Pill (WMP) is a traditional Chinese herbal formulation and widely used to treat digestive system diseases in clinical. S-Adenosylhomocysteine hydrolase (AHCY) can catalyze the hydrolysis of S-adenosylhomocysteine to adenosine and homocysteine in living organisms, and its abnormal expression is linked to the pathogenesis of many diseases including colorectal cancer (CRC). A previous study reported that WMP could prevent CRC in mice; however, the underlying mechanisms especially the roles of AHCY in WMP-induced anti-CRC remain largely unknown. Here, we investigated the regulatory roles and potential mechanisms of AHCY in WMP-induced anti-CRC. WMP notably alleviated the azoxymethane/dextran sulfate sodium- (AOM/DSS-) induced colitis-associated colon cancer (CAC) in mice. Besides, WMP inhibited the inflammation and oxidative stress in AOM/DSS-induced CAC mice. AHCY was high expression in clinical samples of colon cancer compared to the adjacent tissues. WMP inhibited the AHCY expression in AOM/DSS-induced CAC mice. An in vitro study found that AHCY overexpression induced cell proliferation, colony formation, invasion, and tumor angiogenesis, whereas its knockdown impaired its oncogenic function. AHCY overexpression enhanced, while its knockdown weakened the inflammation and oxidative stress in colon cancer cells. Interestingly, WMP potently suppressed the hedgehog (Hh) signaling in AOM/DSS-induced CAC mice. A further study showed that AHCY overexpression activated the Hh signaling while AHCY knockdown inactivated the Hh signaling. Moreover, activation of the Hh signaling reversed the effect of AHCY silencing on inflammation and oxidative stress in vitro. In conclusion, WMP alleviated the AOM/DSS-induced CAC through inhibition of inflammation and oxidative stress by regulating AHCY-mediated hedgehog signaling in mice. These findings uncovered a potential molecular mechanism underlying the anti-CAC effect of WMP and suggested WMP as a promising therapeutic candidate for CRC.


Assuntos
Neoplasias Associadas a Colite , Colite , Neoplasias do Colo , Neoplasias Colorretais , Adenosil-Homocisteinase/metabolismo , Animais , Azoximetano/uso terapêutico , Azoximetano/toxicidade , Colite/induzido quimicamente , Colite/complicações , Colite/tratamento farmacológico , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/tratamento farmacológico , Neoplasias Colorretais/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Proteínas Hedgehog/metabolismo , Inflamação/complicações , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo
12.
Analyst ; 147(16): 3675-3683, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35852237

RESUMO

Studies have shown that homocysteine (Hcy) levels are closely related to cardiovascular and cerebrovascular diseases. In this work, we have developed and synthesized three copper complexes, F542-Cu2+, F508-Cu2+, and F465-Cu2+ for Hcy detection. The different binding constants (Ks) of the copper complexes endow them with dramatic reactivity toward biothiols. The pyridine-containing tetraazacycle was employed in the construction of F542-Cu2+, which renders the medium Ks value for the copper complex compared with cyclen and TACN and effectively prevented the disintegration of the complexes. Pyridine-containing tetraazacycle provided the basis and possibility for the hypothesis for the reduction of Cu2+ by biothiols to shape into a stable six-membered ring structure. The obtained results verified that F542-Cu2+ could be utilized to specifically probe Hcy in a switched-on fluorescence mode. F542-Cu2+ exhibited excellent environmental stability, superior sensitivity, and outstanding selectivity toward Hcy under physiological conditions. The mechanism of Hcy specificity was confirmed to be related to the generation of Hcy-induced six-membered ring by fluorescence imaging, time-dependent fluorescence spectra, ESI-MS, and electron paramagnetic resonance (EPR) analyses. Furthermore, we exploited the application of F542-Cu2+ and developed a strategy for evaluating the activity of S-adenosylhomocysteine hydrolase (AHCY) in vitro by fluorescence analysis. More importantly, real-time in vivo evaluation of the enzymatic activity of AHCY was realized and assisted by our probe, providing the possibility of opening up a new avenue for enzymatic reaction assessment.


Assuntos
Cobre , Homocisteína , Adenosil-Homocisteinase , Cobre/química , Cisteína/análise , Corantes Fluorescentes/química , Imagem Óptica , Piridinas
13.
Bioorg Med Chem Lett ; 72: 128880, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35809817

RESUMO

A series of novel pentanediamide derivatives were designed, synthesized and evaluated as S-adenosyl-l-homocysteine hydrolase (SAHase) inhibitors in this study. Some compounds showed good inhibitory activity against SAHase. The optimal compound 7i showed good inhibitory activity against SAHase with IC50 value of 3.58 ± 0.19 µM, cytotoxicity with IC50 values ranging from 13.16 ± 1.44 to 21.23 ± 0.73 µM against four tumor cell lines (MCF-7, A549, MGC-803, Hela) and very weak cytotoxicity (IC50 = 84.22 ± 1.89 µM) on normal LO2 cells. In addition, compound 7i showed potency against respiratory syncytial virus with EC50 value of 27.4 µM and selectivity index of 6.84. Further molecular simulation study suggested that compound 7i had good ADMET properties, and strongly binds to the active site of SAHase. In summary, compound 7i could serve as a new lead compound for further screening novel non-adenosine SAHase inhibitors.


Assuntos
Antineoplásicos , Homocisteína , Adenosil-Homocisteinase , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Relação Estrutura-Atividade
14.
Atherosclerosis ; 353: 1-10, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35753115

RESUMO

BACKGROUND AND AIMS: It has been established that endothelial senescence plays a critical role in the development of atherosclerosis. Elevated S-adenosylhomocysteine (SAH) level induced by inhibition of S-adenosylhomocysteine hydrolase (SAHH) is one of the risk factors of atherosclerosis; however, the interplay between endothelial senescence and inhibition of SAHH is largely unknown. METHODS: Human umbilical vein endothelial cells (HUVECs) after serial passage were used. SAHH-specific inhibitor adenosine dialdehyde (ADA) and SAHH siRNA treated HUVECs and SAHH+/-mice were used to investigate the effect of SAHH inhibition on endothelial senescence. RESULTS: HUVECs exhibited distinct senescence morphology as HUVECs were passaged, together with a decrease in intracellular SAHH expression and an increase in intracellular SAH levels. SAHH inhibition by ADA or SAHH siRNA elevated SA ß-gal activity, arrested proliferation, and increased the expression of p16, p21 and p53 in HUVECs and the aortas of mice. In addition, decreased expression of hTERT and reduced occupancy of H3K4me3 over the hTERT promoter region were observed following SAHH inhibition treatment. To further verify the role of hTERT in the endothelial senescence induced by SAHH inhibition, hTERT was overexpressed with a plasmid vector under CMV promoter. hTERT overexpression rescued the senescence phenotypes in endothelial cells induced by SAHH inhibition. CONCLUSIONS: SAHH inhibition induces endothelial senescence via downregulation of hTERT expression, which is associated with attenuated histone methylation over the hTERT promoter region.


Assuntos
Aterosclerose , S-Adenosil-Homocisteína , Telomerase/metabolismo , Adenosil-Homocisteinase/genética , Adenosil-Homocisteinase/metabolismo , Animais , Aterosclerose/metabolismo , Senescência Celular , Regulação para Baixo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , RNA Interferente Pequeno , S-Adenosil-Homocisteína/metabolismo , S-Adenosil-Homocisteína/farmacologia
15.
Learn Mem ; 29(4): 110-119, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35351819

RESUMO

In hippocampal CA1 neurons of wild-type mice, a short tetanus (15 or 20 pulses at 100 Hz) or a standard tetanus (100 pulses at 100 Hz) to a naive input pathway induces long-term potentiation (LTP) of the responses. Low-frequency stimulation (LFS; 1000 pulses at 1 Hz) 60 min after the standard tetanus reverses LTP (depotentiation [DP]), while LFS applied 60 min prior to the standard tetanus suppresses LTP induction (LTP suppression). We investigated LTP, DP, and LTP suppression of both field excitatory postsynaptic potentials and population spikes in CA1 neurons of mice lacking the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R)-binding protein released with IP3 (IRBIT). The mean magnitudes of LTP induced by short and standard tetanus were not different in mutant and wild-type mice. In contrast, DP and LTP suppression were attenuated in mutant mice, whereby the mean magnitude of responses after LFS or tetanus were significantly greater than in wild-type mice. These results suggest that, in hippocampal CA1 neurons, IRBIT is involved in DP and LTP suppression, but is not essential for LTP. The attenuation of DP and LTP suppression in mice lacking IRBIT indicates that this protein, released during or after priming stimulations, determines the direction of LTP expression after the delivery of subsequent stimulations.


Assuntos
Adenosil-Homocisteinase/genética , Tétano , Animais , Proteínas de Transporte/metabolismo , Estimulação Elétrica/métodos , Hipocampo/fisiologia , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Potenciação de Longa Duração/fisiologia , Camundongos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia
16.
Nutrients ; 14(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35277077

RESUMO

S-adenosylhomocysteine (SAH) is a risk factor of cardiovascular diseases and atherosclerosis. However, the causal association between SAH and atherosclerosis is still uncertain. In the present study, heterozygous SAH hydrolase (SAHH+/-) knockout mice were bred with apolipoprotein E-deficient mice to produce ApoE-/-/SAHH+/- mice. At 8 weeks of age, these mice were fed on AIN-93G diets added with or without betaine (4 g betaine/100 g diet) for 8 weeks. Compared with ApoE-/-/SAHHWT mice, SAHH deficiency caused an accumulation of plasma SAH concentration and a decrease in S-adenosylmethionine (SAM)/SAH ratio as well as plasma homocysteine levels. Betaine supplementation lowered SAH levels and increased SAM/SAH ratio and homocysteine levels in ApoE-/-/SAHH+/- mice. Furthermore, SAHH deficiency promoted the development of atherosclerosis, which was reduced by betaine supplementation. The atheroprotective effects of betaine on SAHH-deficiency-promoted atherosclerosis were associated with inhibition of NFκB inflammation signaling pathway and inhibition of proliferation and migration of smooth muscle cells. In conclusion, our results suggest that betaine supplementation lowered plasma SAH levels and protected against SAHH-deficiency-promoted atherosclerosis through repressing inflammation and proliferation and migration of smooth muscle cells.


Assuntos
Aterosclerose , Betaína , Adenosil-Homocisteinase/genética , Adenosil-Homocisteinase/metabolismo , Animais , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/prevenção & controle , Betaína/farmacologia , Suplementos Nutricionais , Camundongos , Camundongos Knockout
17.
Autophagy ; 18(2): 309-319, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33993848

RESUMO

S-adenosyl-l-homocysteine (SAH), an amino acid derivative, is a key intermediate metabolite in methionine metabolism, which is normally considered as a harmful by-product and hydrolyzed quickly once formed. AHCY (adenosylhomocysteinase) converts SAH into homocysteine and adenosine. There are two other members in the AHCY family, AHCYL1 (adenosylhomocysteinase like 1) and AHCYL2 (adenosylhomocysteinase like 2). Here we define AHCYL1 function as a SAH sensor to inhibit macroautophagy/autophagy through PIK3C3. The C terminus of AHCYL1 interacts with SAH specifically and the interaction with SAH promotes the binding of the N terminus to the catalytic domain of PIK3C3, resulting in inhibition of PIK3C3. More importantly, this observation was further validated in vivo, indicating that SAH functions as a signaling molecule. Our study uncovers a new axis of SAH-AHCYL1-PIK3C3, which senses the intracellular level of SAH to inhibit autophagy in an MTORC1-independent manner.Abbreviations: ADOX: adenosine dialdehyde; AHCY: adenosylhomocysteinase; AHCYL1: adenosylhomocysteinase like 1; cLEU: cycloleucine; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3P: phosphatidylinositol-3-phosphate; SAH: S-adenosyl-l-homocysteine; SAM: S-adenosyl-l-methionine.


Assuntos
Autofagia , S-Adenosil-Homocisteína , Adenosil-Homocisteinase/química , Adenosil-Homocisteinase/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , S-Adenosil-Homocisteína/química , S-Adenosil-Homocisteína/metabolismo
18.
Neurochem Int ; 150: 105191, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34547325

RESUMO

Spinal cord ischemia-reperfusion injury (SCIRI) can cause dramatic neuron loss and lead to paraplegia in patients. In this research, the role of mGluR5, a member of the metabotropic glutamate receptors (mGluRs) family, was investigated both in vitro and in vivo to explore a possible method to treat this complication. In vitro experiment, after activating mGluR5 via pretreating cells with (RS)-2-Chloro-5-hydroxyphenylglycine (CHPG) and 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB), excitotoxicity induced by glutamate (Glu) was attenuated in primary spinal cord neurons, evidenced by higher neuron viability, decreased lactate dehydrogenase (LDH) release and less detected TUNEL-positive cells. According to Western Blot (WB) results, Glu treatment resulted in a high level of large-conductance Ca2+- and voltage-activated K+ (BK) channels, with activation relying on the mGluR5-IP3R (inositol triphosphate) pathway. In vivo part, a rat model of SCIRI was built to further investigate the role of mGluR5. After pretreating them with CHPG and CDPPB, the rats showed markedly lower spinal water content, attenuated motor neuron injury in the spinal cord of L4 segments, and better neurological function. This effect could be partially reversed by paxilline, a blocker of BK channels. In addition, activating BK channels alone using specific openers: NS1619 or NS11021 can protect spinal cord neurons from injury induced by either SCIRI or Glu. In conclusion, in this research, we proved that mGluR5 exerts a protective role in SCIRI, and this effect partially works via IP3R-mediated activation of BK channels.


Assuntos
Adenosil-Homocisteinase/biossíntese , Canais de Potássio Ativados por Cálcio de Condutância Alta/biossíntese , Neuroproteção/fisiologia , Receptor de Glutamato Metabotrópico 5/biossíntese , Traumatismo por Reperfusão/metabolismo , Isquemia do Cordão Espinal/metabolismo , Animais , Benzamidas/farmacologia , Células Cultivadas , Agonistas de Aminoácidos Excitatórios/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Neuroproteção/efeitos dos fármacos , Paxilina/farmacologia , Pirazóis/farmacologia , Ratos , Receptor de Glutamato Metabotrópico 5/agonistas , Traumatismo por Reperfusão/prevenção & controle , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Isquemia do Cordão Espinal/prevenção & controle
19.
Virulence ; 12(1): 2171-2185, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34424830

RESUMO

The S-adenosyl-L-homocysteine hydrolase (Sah1) plays a crucial role in methylation and lipid metabolism in yeast and mammals, yet its function remains elusive in filamentous fungi. In this study, we characterized Sah1 in the phytopathogenic fungus F. graminearum by generating knockout and knockout-complemented strains of FgSAH1. We found that the FgSah1-GFP fusion protein was localized to the cytoplasm, and that deletion of FgSAH1 resulted in defects in vegetative growth, asexual and sexual reproduction, stress responses, virulence, lipid metabolism, and tolerance against fungicides. Moreover, the accumulations of S-adenosyl-L-homocysteine (AdoHcy) and S-adenosyl-L-methionine (AdoMet) (the methyl group donor in most methyl transfer reactions) in ΔFgSah1 were seven- and ninefold higher than those in the wild-type strain, respectively. All of these defective phenotypes in ΔFgSah1 mutants were rescued by target gene complementation. Taken together, these results demonstrate that FgSah1 plays essential roles in methylation metabolism, fungal development, full virulence, multiple stress responses, lipid metabolism, and fungicide sensitivity in F. graminearum. To our knowledge, this is the first report on the systematic functional characterization of Sah1 in F. graminearum.


Assuntos
Adenosil-Homocisteinase/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium , Fusarium/enzimologia , Fusarium/patogenicidade , Regulação Fúngica da Expressão Gênica , Doenças das Plantas/microbiologia , Esporos Fúngicos/metabolismo , Virulência
20.
Cell Rep ; 36(5): 109487, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34348140

RESUMO

Ketone bodies are bioactive metabolites that function as energy substrates, signaling molecules, and regulators of histone modifications. ß-hydroxybutyrate (ß-OHB) is utilized in lysine ß-hydroxybutyrylation (Kbhb) of histones, and associates with starvation-responsive genes, effectively coupling ketogenic metabolism with gene expression. The emerging diversity of the lysine acylation landscape prompted us to investigate the full proteomic impact of Kbhb. Global protein Kbhb is induced in a tissue-specific manner by a variety of interventions that evoke ß-OHB. Mass spectrometry analysis of the ß-hydroxybutyrylome in mouse liver revealed 891 sites of Kbhb within 267 proteins enriched for fatty acid, amino acid, detoxification, and one-carbon metabolic pathways. Kbhb inhibits S-adenosyl-L-homocysteine hydrolase (AHCY), a rate-limiting enzyme of the methionine cycle, in parallel with altered metabolite levels. Our results illuminate the role of Kbhb in hepatic metabolism under ketogenic conditions and demonstrate a functional consequence of this modification on a central metabolic enzyme.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Corpos Cetônicos/metabolismo , Fígado/metabolismo , Lisina/metabolismo , Proteômica , Adenosil-Homocisteinase/química , Adenosil-Homocisteinase/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Masculino , Camundongos Endogâmicos C57BL , Modelos Moleculares , NAD/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...